Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm
نویسندگان
چکیده
Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.
منابع مشابه
Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase
Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at ...
متن کاملPhysiological characterization of viable-but-nonculturable Campylobacter jejuni cells.
Campylobacter jejuni is a pathogenic, microaerophilic, gram-negative, mesophilic bacterium. Three strains isolated from humans with enteric campylobacteriosis were able to survive at high population levels (10(7) cells ml-1) as viable-but-nonculturable (VBNC) forms in microcosm water. The VBNC forms of the three C. jejuni strains were enumerated and characterized by using 5-cyano-2,3-ditolyl te...
متن کاملmRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm.
The viable but nonculturable (VBNC) state is a survival strategy adopted by bacteria when they are exposed to hostile environmental conditions. It has been shown that VBNC forms of bacteria are no longer capable of growing on conventional bacteriological media but conserve pathogenic factors and/or genes. It is thus necessary to develop methods capable of detecting nonculturable bacteria and of...
متن کاملBehavior of an Aeromonas hydrophila aroA live vaccine in water microcosms.
Genetically modified auxotrophic mutants of different fish pathogens have been used as live vaccines in laboratory experiments, but the behavior of the strains after release into aquatic ecosystems has not been characterized. We previously constructed and characterized an aroA mutant of Aeromonas hydrophila and studied the protection afforded by this mutant as a live vaccine in rainbow trout. I...
متن کاملIn vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus.
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. The bacterium occurs naturally in molluscan shellfish, and ingestion of raw oysters is typically the source of human infection. V. vulnificus is also known to enter a viable but nonculturable (VBNC) state, wherein the cells are no longer culturable on routine plating media but can...
متن کامل